• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
Mechanic37

Mechanic37

इंजीनियरिंग और फिजिक्स,केमिस्ट्री

  • भौतिक विज्ञान
  • इंजीनियरिंग नोट्स
    • मैकेनिकल इंजीनियरिंग
    • इलेक्ट्रिकल इंजीनियरिंग
    • इलेक्ट्रॉनिक इंजीनियरिंग
    • इंजीनियरिंग प्रोजेक्ट्स
  • रसायन
  • जीव विज्ञान
  • कंप्यूटर
Home » लंबन क्या है ? लंबन विधि से पृथ्वी से तारे की दूरी कैसे ज्ञात करते है

लंबन क्या है ? लंबन विधि से पृथ्वी से तारे की दूरी कैसे ज्ञात करते है

अप्रैल 8, 2021 by Er. Mahendra Leave a Comment

5
(1)

लंबन क्या है ? लंबन विधि से पृथ्वी से तारे की दूरी कैसे ज्ञात करते है  

लंबन क्या है ? लंबन विधि से पृथ्वी से तारे की दूरी कैसे ज्ञात करते है

लंबन

आज के इस टॉपिक में हम लंबन के बारे में समझेंगे जिसमे हम समझेंगे की लंबन क्या है एवं इसका उपयोग कहा किया जाता है और किस प्रकार इसका उपयोग किया जाता है इसके बारे में हम विस्तार पूर्वक चित्र के माध्यम से समझेंगे तथा इसके बाद हम यह भी देखेंगे की लंबन विधि के द्वारा पृथ्वी पर स्थित किन्ही दो जगहों से किसी तारे के बिच की दूरी कैसे ज्ञात करते है इसका सूत्र क्या होता है आदि | तो समझना शुरू करते है की लंबन क्या है |

लंबन मापन की एक विधि है जिसमे किसी वस्तु के लिए अलग अलग स्थतियों से देखने पर दूरी का मापन किया जाता है अर्थात  जब एक ही वस्तु को दो अलग – अलग जगहों से देखा जाता है तो दोनों ही स्थतियों में उनके बिच कोणीय विचलन ( Angular Shift ) प्रतीत होता है इसे ही लंबन ( Parallax ) कहा जाता है |

या फिर इसे इस प्रकार से भी समझा जा सकता है की जब हम अपनी दोनों  आँखों से कुछ दूरी पर किसी वस्तु को रखकर  उसे देंखे अर्थात एक आंख को बंद करके दूसरी आंख को खुला रखके इस वस्तु को देखेंगे तो यह किसी स्थान पर हमें दिखाई देगी लेकिन जब इसी वस्तु को हम पहले जो आंख खुली थी उसे बंद करके तथा जो आंख पहले बंद थी उसे खुली रखके अब देंखे तो यही वस्तु अब अलग जगह पर दिखाई देगी |

इस प्रकार जब एक ही वस्तु को दोनों आँखों से अलग अलग देखने पर अलग अलग जगह पर दिखाई देती है इसी कोणीय विचलन को   लंबन कहते     है  | तथा जब इन दोनों अलग अलग स्थानों या बिन्दुओ को जो रेखा मिलाती है उसे आधार रेखा के नाम से जाना जाता है और यह आधार रेखा  उस वस्तु पर जो भी कोण बनाती है उसी के आधार पर लंबन को दर्शाया जाता है | और यह आधार रेखा जितनी बड़ी होगी वस्तु पर कोण का मान भी उतना ही अधिक होगा |

इसका उपयोग करके दूरस्थ स्थित किसी वस्तु की दुरी को भी ज्ञात किया जा सकता है या फिर इसका उपयोग पृथ्वी से कुछ दूर स्थित खगोलीय पिंड की दुरी ज्ञात करने के लिए भी किया जाता है तथा पृथ्वी से दूर  स्थित तारों की स्थति का अध्ययन भी इस विधि के द्वारा किया जाता है |

इस लंबन विधि के द्वारा पृथ्वी पर स्थित वस्तुओ का मापन करना आसान होता है परन्तु जब इस विधि का उपयोग किसी खगोलीय पिंडो की स्थति ज्ञात करने के लिए किया जाता है तो इसके द्वारा मापन थोडा कठिन होता है | अब हम इसको एक उदहारण के माध्यम से समझते है |

लंबन विधि से पृथ्वी से तारे की दूरी ज्ञात करना

अब हम एक उदाहरण  के लिए समझते है की पृथ्वी पर कोई भी दो बिंदु है या फिर दो वेधशालाएं है जहा पर ग्रहों की स्थति , सूर्य की स्थति , उन्नयन कोण आदि का अध्ययन किया जाता है | अब हम इन दोनों वेधशालाओं A तथा B के बिच की दुरी का मापन कर लेते है जिसका मान d है अर्थात दोनों वेधशालाओं के बिच की दूरी d है | जैसा की उपर चित्र क्रमांक 2 में दर्शाया गया है उसके आधार पर हम आगे की प्रोसेस करते है |

अब हम दोनों वेधशालाओं A तथा B से दूरस्थ स्थित किसी तारे को देखते है जो की पृथ्वी से काफी दूर स्थित है | पहले हम एक साथ एक ही समय पर टारगेट तारे को दोनों जगह से  देख लेते है और फिर अलग अलग देखते है इसके लिए हम पहले वेधशाला A से अनंत पर स्थित किसी तारे को देखते है और फिर दूरबीन को उस तारे की और मोडते है जिसे हमने टारगेट किया है इस प्रकार हमने माना  की वेधशाला A से  अनंत पर स्थित तारे से टारगेट तारे की और झुकाव ɵ1  है |

अब हम  वेधशाला B  से अनंत पर स्थित किसी तारे को देखते है और फिर दूरबीन को उस तारे की और मोडते है जिसे हमने टारगेट किया है इस प्रकार हमने माना  की वेधशाला B से  अनंत पर स्थित तारे से टारगेट तारे की और झुकाव ɵ2   है |

अब जब हमें ɵ1 एवं ɵ2 का मान पता चल जाएगा तो हम देखते है तारे से दोनों वेधशालाओं A एवं B के बिच का कोण का मान ɵ1 + ɵ2  हो जाएगा और इसके आधार पर हम वेधशालाओं से तारे के बिच की दूरी जिसे हमने D माना है उसे  ज्ञात कर लेंगे | इसके लिए हम निम्न सूत्र का उपयोग करेंगे –

कोण = च्याप / त्रिज्या

ɵ1 + ɵ2   = d / D

लेकिन हमें तो D का मान ज्ञात करना है अर्थात –

D = d /  ( ɵ1 + ɵ2  )

इस प्रकार हम D का मान ज्ञात कर लेंगे जहा –

D = वेधशाला से टारगेट किये गए तारे की दूरी है |

d = दोनों वेधशालाओं के बिच की दूरी है |

ɵ1 + ɵ2   = टारगेट तारे से दोनों वेधशालाओं के बिच का कोण है |

इस प्रकार हम लंबन विधि के द्वारा किसी तारे की पृथ्वी से दूरी ज्ञात कर सकते है |

यह पेज आपको कैसा लगा ?

Average rating 5 / 5. Vote count: 1

Filed Under: physics Tagged With: लंबन

Reader Interactions

प्रातिक्रिया दे जवाब रद्द करें

आपका ईमेल पता प्रकाशित नहीं किया जाएगा. आवश्यक फ़ील्ड चिह्नित हैं *

Primary Sidebar

Recent Posts

  • Dual Axis Solar Tracking System कैसे बनाएं ? Project Report
  • Anti Sleep Alarm Project कैसे बनाएं ? Engineering Project
  • फायर फाइटर रोबोट कैसे बनाएं ? Fire Fighter Robot Final Year Project
  • सीमांत वेग क्या है इसका व्यंजक व उदाहरण
  • बायो सेवर्ट का नियम क्या है ? सूत्र | डेरीवेशन | उपयोग

विषय

  • भौतिक विज्ञान
  • मैकेनिकल इंजीनियरिंग
  • इलेक्ट्रॉनिक्स इंजीनियरिंग
  • इलेक्ट्रिकल इंजीनियरिंग
  • रसायन विज्ञान
  • जीव विज्ञान 
  • कंप्यूटर 
  • इंजीनियरिंग प्रोजेक्ट्स

Footer

सोशल मीडिया पर जुड़ें

  • Telegram 
  • Facebook
  • Twitter
  • Instagram
  • Youtube

बनाना सीखें

  • ड्रोन कैसे बनाएं ?
  • रोबोट कैसे बनाएं ?
  • वेबसाइट कैसे बनाएं ?
  • एंड्राइड एप कैसे बनाएं ?

हमारे बारे में

इस जगह आप हिंदी में इंजीनियरिंग ,फिजिक्स,केमिस्ट्री,बायोलॉजी,कंप्यूटर etc सीख सकते हो |

Mechanic37 2015 - 2023

  • साइटमैप
  • संपर्क करें
  • हमारे बारे में
  • विज्ञापन दें
  • इलेक्ट्रॉनिक इंजीनियरिंग
  • रसायन विज्ञान
  • जीव विज्ञान
  • कंप्यूटर सीखें
  • इंजीनियरिंग प्रोजेक्ट्स
  • ऑटोकैड टुटोरिअल